Инструмент        19.09.2023   

Простая схема получения из однополярного источника питания двухполярное. Стабилизированный источник тока с изменяющейся полярностью Источник питания с изменяемой полярностью

Особенность этой схемы заключается в том что поворотом регулирующей ручки можно менять не только напряжение на выходе, но и его полярность. Регулировка производится в диапазоне от +12V до -12V.

Схема источника питания с регулировкой полярности

По сути это два раздельный стабилизатора напряжения- по "плюсу" и по "минусу" с общим регулирующим резистором R5.
Трансформатор для источника также требуется с двойной обмоткой.
Когда движок резистора R5 находится в среднем положении то оба стабилизатора закрыты и напряжение на выходе будет равно нулю. При перемещении движка в ту или иную сторону будет открываться один из регулируемых стабилизаторов- либо "плюсовой" либо "минусовой" и, соответственно, напряжение на выходе будет изменяться.

Емкости конденсаторов С1 и С2 не должны быть меньше 1000 мкФ. Вместо транзисторов КТ816 и КТ817 можно применить более мощные- например КТ818 и КТ819. Мощность самого источника питания напрямую зависит от мощности применяемого трансформатора.
Трансформатор должен иметь две выходные обмотки не менее чем по 12 Вольт каждая.
Вместо диодной сборки КЦ405 можно использовать четыре простых диода включенных мостом.

При проектировании промышленных приборов, к которым предъявляются повышенные требования по надёжности, я не раз сталкивался с проблемой защиты устройства от неправильной полярности подключения питания. Даже опытные монтажники порой умудряются перепутать плюс с минусом. Наверно ещё более остро подобные проблемы стоят в ходе экспериментов начинающих электронщиков. В данной статье рассмотрим простейшие решения проблемы - как традиционные так и редко применяемые на практике методы защиты.

Простейшее решение, которое напрашивается с ходу - включение последовательно с прибором обычного полупроводникового диода.


Просто, дёшево и сердито, казалось бы чего ещё нужно для счастья? Однако, у такого способа есть очень серьёзный недостаток - большое напряжение падения на открытом диоде.


Вот типичная ВАХ для прямого включения диода. При токе в 2 Ампера напряжение падения составит примерно 0.85 вольт. В случае низковольтных цепей 5 вольт и ниже это очень существенная потеря. Для более высоковольтных такое падение играет меньшую роль, но есть ещё один неприятный фактор. В цепях с высоким током потребления на диоде будет рассеиваться весьма значительная мощность. Так для случая, изображённого на верхней картинке, получим:
0.85В х 2А = 1.7Вт.
Рассеиваемая на диоде мощность уже многовата для такого корпуса и он будет ощутимо греться!
Впрочем, если вы готовы расстаться с несколько большими деньгами, то можно применить диод Шоттки, который имеет меньшее напряжение падения.


Вот типичная ВАХ для диода Шоттки. Подсчитаем рассеиваемую мощность для этого случая.
0.55В х 2А = 1.1Вт
Уже несколько лучше. Но что же делать если ваше устройство потребляет ещё более серьёзный ток?
Иногда параллельно устройству ставят диоды в обратном включении, которые должны сгореть если перепутать напряжение питания и привести к короткому замыканию. Ваше устройство при этом скорее всего потерпит минимум повреждений, но может выйти из строя источник питания, не говоря уже о том, что сам защитный диод придётся заменить, а вместе с ним могут и дорожки на плате повредиться. Словом этот способ для экстрималов.
Однако, есть ещё один несколько более затратный, но весьма простой и лишённый перечисленных выше недостатков способ защиты - с помощью полевого транзистора. За последние 10 лет параметры этих полупроводниковых приборов резко улучшились, а цена наоборот сильно упала. Пожалуй то, что их крайне редко используют для защиты ответственных цепей от неправильной полярности подачи питания можно объяснить во многом инерцией мышления. Рассмотрим следующую схему:


При подаче питания напряжение на нагрузку проходит через защитный диод. Падение на нём достаточно велико - в нашем случае около вольта. Однако в результате между затвором и истоком транзистора образуется напряжение превышающее напряжение отсечки и транзистор открывается. Сопротивление исток-сток резко уменьшается и ток начинает течь уже не через диод, а через открытый транзистор.


Перейдём к конкретике. Например для транзистора FQP47З06 типичное сопротивление канала будет составлять 0.026 Ом! Нетрудно рассчитать что рассеиваемая при этом на транзисторе мощность для нашего случая будет всего 25 милливатт, а падение напряжение близко к нулю!
При смене полярности источника питания ток в цепи течь не будет. Из недостатков схемы можно пожалуй отметить разве то, что подобные транзисторы имеют не слишком большое пробивное напряжение между затвором и истоком, но слегка усложнив схему можно применить её для защиты более высоковольтных цепей.


Думаю читателям не составит труда самим разобраться как работает эта схема.

Уже после публикации статьи уважаемый пользователь в комментариях привел схему защиты на основе полевого транзистора, которая применяется в iPhone 4. Надеюсь он не будет возражать если я дополню свой пост его находкой.

Управляемый источник постоянного стабилизированного тока с хорошими динамическими характеристиками, позволяет изменять величину и полярность выходного тока под действием входного управляющего напряжения. Источник может входить в состав различных приборов и систем. Точность соответствия выходного тока входному управляющему напряжению позволяет использовать источник для ответственных применений. Работу источника тока можно пояснить на примере управления светодиодным индикатором.

Применение источника тока для управления светодиодами

Яркость свечения светодиодов удобнее изменять, регулируя ток, протекающий через светодиод, а не напряжение, приложенное к светодиоду. С помощью управляемого источника стабилизированного тока можно осуществить изменение и регулировку яркости свечения обычных или лазерных светодиодов. Сменой полярности можно выбирать группу работающих светодиодов. При одной полярности тока будут светиться светодиоды Н1-Н6, при противоположной полярности светодиоды Н7-Н12. Если светодиоды имеют различный цвет, например Н1-Н6 красные, а Н7-Н12 зеленые, можно осуществить индикацию нормального и критического значения контролируемой величины.

Источник постоянного стабилизированного тока необходим для регулирования величины постоянного магнитного поля. Управляющее напряжение может поступать от цифроаналогового преобразователя специализированного контроллера или другого прибора.


Применение источника тока для управления электродвигателями

С помощью источника постоянного тока, обладающего возможностью менять направление тока, достаточно просто осуществить регулирование скорости вращения и смену направления вращения ротора электродвигателя. Для передачи команды, устанавливающей параметры вращения достаточно одной двухпроводной линии. Вращение в прямом направлении происходит при положительной полярности тока на контакте 1 и отрицательной полярности на контакте 2 выходного разъема источника тока U1.

Реверс двигателя происходит при смене полярности управляющего напряжения и вызванного этим изменением полярности выходного тока. С помощью одного источника меняющего направление тока можно управлять двумя электродвигателями. При положительной полярности выходного тока на контакте 1 протекает ток через диод VD2 и работает электродвигатель М2, при отрицательной полярности тока на контакте 1 протекает ток через диод VD1 и работает электродвигатель М1. Реверс двигателей при такой схеме подключения отсутствует.

Источник тока управляемый напряжением находит применение при передаче аналоговых сигналов. При таком способе организации связи величина тока пропорциональна аналоговой величине. Искажение электромагнитными помехами сигнала, передаваемого током значительно меньше по сравнению с обычным способом передачи сигнала напряжением.

Использование токового сигнала требует установки в передающей и приемной аппаратуре специальных модулей передачи и приема тока. При этом можно исключить цифровое кодирование передаваемых данных. Источник тока управляемый напряжением применяется для плавного управления электромагнитными регуляторами на основе соленоидов в гидравлических системах. На базе управляемого источника тока легко построить универсальный прибор зарядки аккумуляторов разных типов.

Работа источника тока

Ток, генерируемый идеальным источником, стабилен при изменении сопротивления подключенной нагрузки. Для поддержания величины тока постоянной изменяется значение ЭДС источника. Изменение сопротивления нагрузки вызывает изменение ЭДС источника тока таким образом, что значение тока остается неизменным.

Реальные источники тока поддерживают ток на требуемом уровне в ограниченном диапазоне напряжения, создаваемого на изменяющемся сопротивлении нагрузки. Этот диапазон ограничен мощностью электропитания источника тока. Если необходимо поддерживать ток величиной 1 ампер на нагрузке 20 ом, это означает, что на нагрузке будет напряжение 20 вольт. При снижении сопротивления нагрузки или коротком замыкании выходное напряжение будет снижаться, а при увеличении сопротивления нагрузки электропитание должно обеспечить возможность работы при напряжениях выше 20 вольт.

Работа источника тока требует источника электропитания. Последовательно с источником электропитания включается стабилизатор тока. Выход такого прибора рассматривается как источник тока. Параметры электропитания источника тока конечны, это ограничивает максимальное сопротивление нагрузки, которую можно подключить к источнику тока. Для обеспечения надежной работы электропитание должно иметь запас по перегрузке. Ограниченная мощность электропитания ограничивает максимальный ток, который может отдать в нагрузку источник тока.

Источник тока может работать при сопротивлении нагрузки близком к нулю. Замыкание выхода источника тока не приводит к аварии устройства или срабатывании защиты. Если произошло замыкание выхода источника тока вызванное повышенной влажностью, неаккуратным обращением с оборудованием обслуживающего персонала после ликвидации причин замыкания прибор мгновенно возвращается к нормальному режиму работы.

Схема управляемого источника тока

  • Напряжение питания………….100…260 В, 47…440 Гц
  • Входное напряжение………….±10 В
  • Выходной ток………………….± 100 мА
  • Сопротивление нагрузки……..0,1…120 Ом
  • Температурный диапазон……-50…+75 ±С
  • Точность преобразования……0,5 %

Упрощенная схема источника тока

В основе работы схемы находится свойство операционного усилителя изменять выходное напряжение операционного усилителя так чтобы сравнять напряжение на входах благодаря цепям обратной связи. Управляющее напряжение через резистор R1 поступает на инвертирующий вход операционного усилителя и вызывает изменение напряжение на его выходе.

Изменение напряжения на выходе усилителя вызывает протекание тока через резистор R5 и нагрузку. Выходное напряжение через цепи обратной связи поступает на входы операционного усилителя. Сопротивления резисторов имеют величины, обеспечивающие нужную пропорциональность между влиянием на управляющее напряжение и током через нагрузку.

При положительном управляющем напряжении, поступающем на инвертирующий вход операционного усилителя, на его выходе формируется отрицательное напряжение. Через резистор и нагрузку течет ток создающий напряжение на резисторе R5. Потенциал в точке соединения резисторов R3 и R5 ниже, чем в точке соединения резисторов R4, R5 и нагрузки.

Благодаря тому, что суммарное сопротивление резисторов R4 и R5 равняется сопротивлению R3, на выходе усилителя присутствует потенциал, компенсирующий управляющее напряжение на входах операционного усилителя через резисторы обратной связи. Потенциал на выходе усилителя снизится настолько, насколько это необходимо для компенсации действия положительного управляющего напряжения на инвертирующий вход операционного усилителя.

Компенсация действия управляющего напряжения на входы операционного усилителя происходит в зависимости от напряжения на резисторе R5, вызванного протекающим током. Если управляющее напряжение фиксировано, то влияние обратной связи на входы операционного усилителя происходит в зависимости от напряжения на резисторе R5.

Изменение сопротивления нагрузки приводит к изменению потенциала на неинвертирующем входе операционного усилителя через резистор R4. При снижении сопротивления нагрузки снижается потенциал на неинвертирующем входе операционного усилителя и увеличивается напряжение между входами операционного усилителя, что вызывает снижение потенциала на выходе усилителя. При этом на уменьшившемся сопротивлении нагрузки уменьшается приложенное напряжение, не позволяя возрасти току.

Пропорциональность между управляющим напряжением и выходным током устанавливается сопротивлениями резисторов. Сопротивление резистора R5 должно быть малым, через него течет выходной ток, вызывающий нагрев. Уменьшение сопротивления R5, расширяет диапазон сопротивления подключаемых нагрузок. Сопротивления резисторов R1 и R2 равны, значения их выбраны таковыми, что исключают перегрузку источника управляющего напряжения. Сопротивления резисторов вычисляются по следующим формулам:

I = (U*R3)/(R1*R5)

  • U — управляющее напряжение
  • I — выходной ток

Одним из важных параметров любого источника тока, а в нашем случае преобразователя напряжение-ток, является диапазон сопротивления подключаемых нагрузок. Идеализированная модель устройства обеспечивает требуемый ток в диапазоне изменения сопротивления нагрузки от 0 до бесконечности.

В реальных устройствах это невозможно и ненужно, так как к сопротивлению нагрузки прибавляется сопротивление проводов, контактов разъемов, и элементов других цепей. Свойство источника тока обеспечить работу системы независимо от сопротивления нагрузки является очень полезным. Благодаря этому свойству повышает надежность системы, в которой участвует источник тока.

Недостатком источника тока является мощность, выделяемая на выходном усилителе. В каждом случае потребуется выбрать компромисс между запасом по сопротивлению нагрузки и выделяемым теплом на выходном усилителе. Для обеспечения широкого диапазона сопротивлений нагрузки приходится использовать электропитание устройства с достаточным запасом по величине напряжения.


с изменением направления тока

Практическая реализация источника изображена на электрической принципиальной схеме. Для точного соответствия схемы расчетам сопротивления собраны из резисторов, включенных последовательно или параллельно. Выходной усилитель состоит из транзисторов VT1 и VT2. При выходном токе сто миллиампер на нагрузке двадцать ом напряжение составит два вольта, на регулирующем транзисторе падение напряжение примерно 0,6 вольт, на резисторе R5 падение напряжения 0,1 вольт. При питании 15 вольт напряжение на одном из двух транзисторов усилителя составит 15В-2,7В=12,3В, а мощность около 12,3В*100мА=1,23 Вт выделится в виде тепла.

Конденсатор С4 необходим для подавления наводок наведенных на линию, подключенную к управляющему входу устройства, конденсатор С5 предотвращает возбуждение схемы. Конденсатор С1 уменьшает помехи устройства в сеть питания. Питание осуществляется от сети 220 вольт, 50 гц.

Благодаря импульсному преобразователю напряжения DA1 к питанию не предъявляется требований по стабильности напряжения. Автоматический выключатель Q1 выполняет функции тумблера питания и защищает от перегрузки сеть 220 вольт при аварии устройства. Н1 – индикатор наличия питания. Трансил-диод VD1 защищает источник питания от превышения сетевого напряжения выше критического значения. Преобразователь напряжения обеспечивает схему устройства двухполярным питанием, необходимым для работы операционного усилителя и формирования выходного тока двух полярностей.

Компоненты схемы

Позиционное
обозначение
Наименование
Конденсаторы
C1 K73-16 0,01 мкФ ± 20%, 630 В
C2, C3
C4 100 пФ-J-1H-H5 50 Вольт, ф. Hitano C5 0,47 мкФ-К-1Н-Н5 50 Вольт, ф. Hitano
Резисторы
R1, R2 C2-29B-0,125-101 Ом ± 0.05 %
R3 C2-23-0,25-33 Ом ± 5 % R4 C2-29B-0,125-101 Ом ± 0.05 % R5 1 Ом ± 0.01 % Astro 2000 axial ф. Megatron Electronic R6, R7 C2-29B-0,125-200 Ом ± 0.05 % R8, R9 C2-29B-0,125-10 кОм ± 0.05 %
Транзисторы и диоды
VT1 TIP3055 ф. Motorola
VT2 TIP2955 ф. Motorola
VD1 Трансил-диод двунаправленный 1.5KE350CA ф. STMicroelectronics
Схемы и модули
H1 Светодиодная коммутаторная лампа СКЛ-14БЛ-220П “Протон” DA1 Преобразователь напряжения TML40215 ф. TRACO POWER DA2 Микросхема операционного усилителя OP2177AR Q1 Автоматический выключатель УкрЕМ ВА-2010-S 2p 4А “Аско”

Конденсатор C1 может быть любого типа. Важное требование, предъявляемое к этому компоненту это уровень рабочего напряжения не ниже 630 вольт. Конденсаторы С2…С5 можно использовать керамические или многослойные. Все резисторы кроме R3 должны иметь максимально возможную точность. Резистор R5 лучше сделать составным из четырех резисторов сопротивлением 1 ом.

Две цепи, состоящие из двух последовательно включенных резисторов по 1 ом, соединяются параллельно. В результате общее сопротивление составляет 1 ом, а рассеиваемая мощность увеличивается в четыре раза. Резистор R5 проволочного типа применять нельзя. Импульсный преобразователь напряжения DA1 можно заменить двухполярным блоком питания, обеспечивающим выходной ток в каждом плече 500 миллиампер и уровень пульсаций не более 50 милливольт.

Для достижения высокой точности преобразования управляющего напряжения в выходной ток операционный усилитель, должен иметь малое напряжение смещение нуля. Особенно это важно для снижения выходного тока до нуля под действием управляющего напряжения. При некотором снижении точности в качестве замены DA1 подойдут микросхемы OP213 или OP177. Применение на выходе схемы мощных транзисторов увеличивает надежность устройства. Транзисторы обязательно устанавливаются на радиаторы.

Схему можно использовать для других выходных токов и управляющих напряжений. Для этого потребуется произвести расчеты по приведенным формулам ранее в статье. При выполнении расчетов следует учитывать возможность применения резисторов из стандартного ряда сопротивлений.

При проверке работы схемы необходимо во всем диапазоне напряжений, токов и сопротивления нагрузки проверить осциллографом отсутствие колебаний на выходе схемы. В случае наличия колебаний увеличить емкость C4 или С5.

Платон Константинович Денисов, г. Симферополь
[email protected]

Особенность этого источника питания в том, что вращением ручки-регулятора мож­но не только изменять выходное напряжение, но и его полярность. Практически регули­руется от +12В до - 12В. Достигнуто это благодаря немного необычному включе­нию стабилизаторов двуполйрного источ­ника питания, так что оба стабилизатора регулируются при по­мощи одного перемен­ного резистора.

Принципиальная схема показана на рисунке. Выпрямитель - двуполярный, выполненный по стандартной схеме на трансформаторе Т1 с вторичной обмоткой с отводом от середины, диодном мосте VD 1 и конденсаторах С1 и С2. В результате на его выходе получается двуполярное напряжение +-16.. ,20В. Это напряжение поступает на два стабилизатора на транзисторах VT 1 и VT 3 (регулировка положительного напряжения) и на транзисторах VT 2 и VT 4 (регулировка отрицательного напряжения). Отличие от стандартной двуполярной схемы в том, что выходы стабилизаторов включены вместе, и в том, что для регулировки напряжения используется один общий переменный резистор R 5. Таким образом, если движок этого резистора установлен точно посредине, и напряжение на нем относительно общего провода равно нулю, то оба стабилизатора закрыты, и напряжение на выходе схемы также равно нулю. Теперь если движок начали перемещать в сторону положительных напряжений (вверх по схеме) начинает открываться стабилизатор положительного напряжения на транзисторах VT 1 и VT 3, а стабилизатор отрицательных напряжений (VT 4 и VT 2) по прежнему остается закрытым. В результате на выходе положительное напряжение. Теперь если движок перемещать в строну отрицательных напряжений (вниз по схеме), положительное напряжение на выводе схемы будет уменьшаться и в среднем положении R 5 напряжение станет равно нулю. Стабилизатор положительного напряжения закроется. Если движок перемещать дальше в том же направлении начнет открываться стабилизатор отрицательного напряжения на VT 2 и VT 4 (при этом стабилизатор положительного напряжения будет закрыт) и на выходе будет увеличиваться отрицательное напряжение.

В конструкции используется готовый транс­форматор " TAIWAN ", мощностью 10Вт, выдаю­щий на вторичной обмотке два переменных напряжения по 12В.

Емкости конденсаторов С1 и С2 не должны быть меньше 1000 мкФ, нужно учитывать, что от них зависит уровень пульсаций на выходе. Стабилитроны могут быть любые маломощные на напряжение 12В. Транзистор КТ817 можно заменить на КТ815, КТ807, КТ819. Транзистор КТ816 - на КТ814, КТ818. Транзисторы КТ502 и КТ503 можно заменить, соответственно, на КТ361 и КТ315. Выпрямительный мост можно использовать другой, например КЦ402 или собрать его из диодов типа Д226 или КД105.

Транзисторы VT 1 и VT 2 нужно поставить на небольшие теплоотводы.

Особенность этого источника питания в том, что вращением ручки-регулятора можно не только изменять выходное напряжение, но и его полярность. Практически напряжение регулируется от + 12 до —12 В. Достигнуто это благодаря немного необычному включению стабилизаторов двуполярного источника питания, так, что оба стабилизатора регулируются при помощи одного переменного резистора. Принципиальная схема источника показана на рис. 2.25.

Выпрямитель — двуполярный, выполненный по стандартной схеме на трансформаторе Т1 с вторичной обмоткой с отводом от середины, диодном мосте VDI и конденсаторах С1 и С2. В результате на его выходе получается двуполярное напряжение. Это напряжение поступает на два стабилизатора на транзисторах VT1 и VT3 (регулировка положительного напряжения) и на транзисторах VT2 и VT4 (регулировка отрицательного напряжения).

Отличие от стандартной двуполярной схемы в том, что выходы стабилизаторов включены вместе, и в том, что для регулировки напряжения используется один общий переменный резистор R5. Таким образом, если движок этого резистора установлен точно посередине, и напряжение на нем относительно общего провода равно нулю, то оба стабилизатора закрыты, и напряжение на выходе схемы также равно нулю. Если движок начали перемещать в сторону положительных напряжений (вверх по схеме), начинает открываться стабилизатор положительного напряжения на транзисторах VT1 и VT3, а стабилизатор отрицательных напряжений VT4 и VT2 по-прежнему остается закрытым.

В конструкции используется готовый трансформатор мощностью 10 Вт, выдающий на вторичной обмотке два переменных напряжения по 12 В. Емкости конденсаторов С1 и С2 не должны быть меньше 1000 мкФ, нужно учитывать, что от них зависит уровень пульсации на выходе.

Стабилитроны могут быть любые маломощные на напряжение 12 В. Транзистор КТ817 можно заменить на КТ815, КТ807, КТ819. Транзистор КТ816 — на КТ814. Транзисторы КТ502 и КТ503 можно заменить, соответственно, на КТ361 и КТ315. Выпрямительный мост можно использовать другой, например, КЦ402 или собрать его из диодов типа Д226 или КД105. Транзисторы VT1 и VT2 нужно поставить на небольшие теплоотводы.